Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 865
Filtrar
1.
Microbiome ; 12(1): 72, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600530

RESUMO

BACKGROUND: Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS: Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS: The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.


Assuntos
Quirópteros , Vírus , Animais , Animais Selvagens , Genoma Viral/genética , Filogenia , Recombinação Genética , Roedores , Uganda/epidemiologia
2.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622728

RESUMO

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Assuntos
Influenzavirus A , Medicamentos de Ervas Chinesas , Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Pneumonia/tratamento farmacológico , Pneumonia/genética , Inflamação , Biologia de Sistemas , Perfilação da Expressão Gênica
3.
J Pharm Anal ; 14(4): 100915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634065

RESUMO

Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.

4.
Front Microbiol ; 15: 1369506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659989

RESUMO

Single-cell isolation stands as a critical step in single-cell studies, and single-cell ejection technology based on laser induced forward transfer technology (LIFT) is considered one of the most promising methods in this regard for its ability of visible isolating single cell from complex samples. In this study, we improve the LIFT technology and introduce optical vortex laser-induced forward transfer (OV-LIFT) and flat-top laser-induced forward transfer (FT-LIFT) by utilizing spatial light modulator (SLM), aiming to enhance the precision of single-cell sorting and the cell's viability after ejection. Experimental results demonstrate that applying vortex and flat-top beams during the sorting and collection process enables precise retrieval of single cells within diameter ranges of 50 µm and 100 µm, respectively. The recovery rates of Saccharomyces cerevisiae and Escherichia coli DH5α single cell ejected by vortex beam are 89 and 78%, by flat-top beam are 85 and 57%. When employing Gaussian beam sorting, the receiving range extends to 400 µm, with cultivation success rates of S. cerevisiae and E. coli DH5α single cell are 48 and 19%, respectively. This marks the first application of different mode beams in the ejection and cultivation of single cells, providing a novel and effective approach for the precise isolation and improving the viability of single cells.

5.
Sci China Life Sci ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38561484

RESUMO

The basic mechanism of heterosis has not been systematically and completely characterized. In previous studies, we obtained three economically important fishes that exhibit rapid growth, WR (WCC ♀ × RCC ♂), WR-II (WR ♀ × WCC ♂), and WR-III (WR-II ♀ × 4nAU ♂), through distant hybridization. However, the mechanism underlying this rapid growth remains unclear. In this study, we found that WR, WR-II, and WR-III showed muscle hypertrophy and higher muscle protein and fat contents compared with their parent species (RCC and WCC). Candidate genes responsible for this rapid growth were then obtained through an analysis of 12 muscle transcriptomes. Notably, the mRNA level of mstnb (myostatin b), which is a negative regulator of myogenesis, was significantly reduced in WR, WR-II, and WR-III compared with the parent species. To verify the function of mstnb, a mstnb-deficient mutant RCC line was generated using the CRISPR-Cas9 technique. The average body weight of mstnb-deficient RCC at 12 months of age was significantly increased by 29.57% compared with that in wild-type siblings. Moreover, the area and number of muscle fibers were significantly increased in mstnb-deficient RCC, indicating hypertrophy and hyperplasia. Furthermore, the muscle protein and fat contents were significantly increased in mstnb-deficient RCC. The molecular regulatory mechanism of mstnb was then revealed by transcription profiling, which showed that genes related to myogenesis (myod, myog, and myf5), protein synthesis (PI3K-AKT-mTOR), and lipogenesis (pparγ and fabp3) were highly activated in hybrid fishes and mstnb-deficient RCC. This study revealed that low expression or deficiency of mstnb regulates somatic growth by promoting myogenesis, protein synthesis, and lipogenesis in hybrid fishes and mstnb-deficient RCC, which provides evidence for the molecular mechanism of heterosis via distant hybridization.

6.
BMC Cancer ; 24(1): 426, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584263

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the 3rd most common malignancy with the liver being the most common site of metastases. The recurrence rate of colorectal liver metastases (CRLM) after liver resection (LR) is notably high, with an estimated 40% of patients experiencing recurrence within 6 months. In this context, we conducted a meta-analysis to synthesize and evaluate the reliability of evidence pertaining to prognostic factors associated with early recurrence (ER) in CRLM following LR. METHODS: Systematic searches were conducted from the inception of databases to July 14, 2023, to identify studies reporting prognostic factors associated with ER. The Quality in Prognostic Factor Studies (QUIPS) tool was employed to assess risk-of-bias for included studies. Meta-analysis was then performed on these prognostic factors, summarized by forest plots. The grading of evidence was based on sample size, heterogeneity, and Egger's P value. RESULTS: The study included 24 investigations, comprising 12705 individuals, during an accrual period that extended from 2007 to 2023. In the evaluation of risk-of-bias, 22 studies were rated as low/moderate risk, while two studies were excluded because of high risk. Most of the studies used a postoperative interval of 6 months to define ER, with 30.2% (95% confidence interval [CI], 24.1-36.4%) of the patients experiencing ER following LR. 21 studies were pooled for meta-analysis. High-quality evidence showed that poor differentiation of CRC, larger and bilobar-distributed liver metastases, major hepatectomy, positive surgical margins, and postoperative complications were associated with an elevated risk of ER. Additionally, moderate-quality evidence suggested that elevated levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA199), lymph node metastases (LNM) of CRC, and a higher number of liver metastases were risk factors for ER. CONCLUSION: This review has the potential to enhance the efficacy of surveillance strategies, refine prognostic assessments, and guide judicious treatment decisions for CRLM patients with high risk of ER. Additionally, it is essential to undertake well-designed prospective investigations to examine additional prognostic factors and develop salvage therapeutic approaches for ER of CRLM.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Hepatectomia , Prognóstico , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/patologia , Estudos Prospectivos , Reprodutibilidade dos Testes , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/cirurgia , Estudos Retrospectivos
8.
J Asian Nat Prod Res ; 26(1): 120-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38509697

RESUMO

Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.


Assuntos
Fenol , Psoralea , Fenol/análise , Frutas/química , Psoralea/química , Monoterpenos , Estrutura Molecular , Fenóis/química
9.
Ying Yong Sheng Tai Xue Bao ; 35(2): 533-542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523112

RESUMO

Under the background of frequent flood disasters and stock planning challenges, clarifying the relationship and mechanism of urban green space landscape patterns and flood retention efficiency at multiple spatial scales has become a critical scientific issue in realizing the maximum flood retention efficiency of limited urban green spaces and improving the capabilities of urban flood control. We reviewed and summarized the factors, mechanisms, and scale differences in the influence of green space landscape patterns on flood retention efficacy at the urban and block scales. Based on the causes for differences in conclusions and research deficiencies, we suggested that future studies should focus on watershed-scale research and expand the investigation into three-dimensional green space landscape patterns. Additionally, attention should be paid to urban and suburban areas separately, and a set of research indices with indicative significance for the flooding process should be established for different flood-sensitive areas and block structures. These measures will help quantitatively reveal how green space landscape patterns of urban and block scales affect flooding process, providing theoretical guidance for urban planning and establishing urban flood safety patterns.


Assuntos
Inundações , Cidades , Planejamento de Cidades , Desastres , Parques Recreativos
10.
iScience ; 27(4): 109407, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38532885

RESUMO

Converging studies showed interstitial fluid (ISF) adjacent to blood vessels flows in adventitia along vasculature into heart and lungs. We aim to reveal circulatory pathways and regulatory mechanism of such adventitial ISF flow in rat model. By MRI, real-time fluorescent imaging, micro-CT, and histological analysis, ISF was found to flow in adventitial matrix surrounded by fascia and along systemic vessels into heart, then flow into lungs via pulmonary arteries and back to heart via pulmonary veins, which was neither perivascular tissues nor blood or lymphatic vessels. Under physiological conditions, speckle-like adventitial ISF flow rate was positively correlated with heart rate, increased when holding breath, became pulsative during heavy breathing. During cardiac or respiratory cycle, each dilation or contraction of heart or lungs can generate to-and-fro adventitial ISF flow along femoral veins. Discovered regulatory mechanisms of adventitial ISF flow along vasculature by heart and lungs will revolutionize understanding of cardiovascular system.

11.
ACS Nano ; 18(12): 8718-8732, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465955

RESUMO

Although stem cell therapy is proved to be a promising strategy for bone repair and regeneration, transplanted allogeneic stem cells generally suffer from unfavorable apoptosis instead of differentiation into osteocytes. How the apoptotic stem cells promote bone regeneration still needs to be uncovered. In this work, we found that apoptotic extracellular vesicles released by allogeneic stem cells are critical mediators for promoting bone regeneration. Based on the results of in vivo experiments, a mechanism of apoptotic stem cells determined autologous stem cell recruitment and enhance osteogenesis was proposed. The nanoscaled apoptotic extracellular vesicles released from transplanted stem cells were endocytosed by vascular endothelial cells and preferentially distribute at endoplasmic reticular region. The oxidized phosphatidylcholine enriched in the vesicles activated the endoplasmic reticulum stress and triggered the reflective elevation of adhesion molecules, which induced the recruitment of autologous stem cells located in the blood vessels, transported them into the defect region, and promoted osteogenesis and bone repair. These findings not only reveal the mechanism of stem cell therapy of bone defects but also provide a cue for investigation of the biological process of stem cell therapy for other diseases and develop stem cell therapeutic strategies.


Assuntos
Células Progenitoras Endoteliais , Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , Osteogênese , Vesículas Extracelulares/metabolismo , Diferenciação Celular
12.
Cancer Med ; 13(5): e7015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38491808

RESUMO

BACKGROUND: Gastric cardia adenocarcinoma (GCA) is classified as Siewert type II adenocarcinoma at the esophagogastric junction in Western countries. The majority of GCA patients do not exhibit early warning symptoms, leading to over 90% of diagnoses at an advanced stage, resulting in a grim prognosis, with less than a 20% 5-year survival rate. METHOD: Metabolic features of 276 GCA and 588 healthy controls were characterized through a widely-targeted metabolomics by UPLC-MS/MS analysis. This study encompasses a joint pathway analysis utilizing identified metabolites, survival analysis in both early and advanced stages, as well as high and negative and low expression of HER2 immunohistochemistry staining. Machine learning techniques and Cox regression models were employed to construct a diagnostic panel. RESULTS: A total of 25 differential metabolites were consistently identified in both discovery and validation sets based on criteria of p < 0.05, (VIP) ≥ 1, and FC ≥ 2 or FC ≤ 0.5. Early-stage GCA patients exhibited a more favorable prognosis compared to those in advanced stages. HER2 overexpression was associated with a more positive outcome compared to the negative and low expression groups. Metabolite panel demonstrated a robust diagnostic performance with AUC of 0.869 in discovery set and 0.900 in validation set. CONCLUSIONS: A total of 25 common and stable differential metabolites may hold promise as liquid non-invasive indicators for GCA diagnosis. HER2 may function as a tumor suppressor gene in GCA, as its overexpression is associated with improved survival. The downregulation of bile acid metabolism in GCA may offer valuable theoretical insights and innovative approaches for precision-targeted treatments in GCA patients.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Cárdia/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Gástricas/patologia , Adenocarcinoma/patologia , Biomarcadores
13.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516783

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with a poor prognosis, and its heterogeneity affects the response to clinical treatments. Glycolysis is highly associated with HCC therapy and prognosis. The present study aimed to identify a novel biomarker for HCC by exploring the heterogeneity of glycolysis in HCC. The intersection of both marker genes of glycolysis­related cell clusters from single­cell RNA sequencing analysis and mRNA data of liver HCC from The Cancer Genome Atlas were used to construct a prognostic model through Cox proportional hazard regression and the least absolute shrinkage and selection operator Cox regression. Data from the International Cancer Genome Consortium were used to validate the results of the analysis. Immune status analysis was then conducted. A significant gene in the prognostic model was identified as a potential biomarker and was verified through in vitro experiments. The results revealed that the glycolysis­related prognostic model divided patients with HCC into high­ and low­risk groups. A nomogram combining the model and clinical features exhibited accurate predictive ability, with an area under the curve of 0.763 at 3 years. The high­risk group exhibited a higher expression of checkpoint genes and lower tumor immune dysfunction and exclusion scores, suggesting that this group may be more likely to benefit from immunotherapy. The tumor tissues had a higher zinc finger protein (ZFP)41 mRNA and protein expression compared with the adjacent tissues. In vitro analyses revealed that ZFP41 played a crucial role in cell viability, proliferation, migration, invasion and glycolysis. On the whole, the present study demonstrates that the glycolysis­related prognostic gene, ZFP41, is a potential prognostic biomarker and therapeutic target, and may play a crucial role in glycolysis and malignancy in HCC.


Assuntos
Carcinoma Hepatocelular , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Glicólise/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Prognóstico , RNA Mensageiro , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Biomarcadores
14.
FEBS Lett ; 598(6): 702-715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439679

RESUMO

Ubiquitination is a cascade reaction involving E1, E2, and E3 enzymes. The orthogonal ubiquitin transfer (OUT) method has been previously established to identify potential substrates of E3 ligases. In this study, we verified the ubiquitination of five substrates mediated by the E3 ligases CHIP and E4B. To further explore the activity of U-box domains of E3 ligases, two mutants with the U-box domains interchanged between CHIP and E4B were generated. They exhibited a significantly reduced ubiquitination ability. Additionally, different E3s recruited similar E2 ubiquitin-conjugating enzymes when ubiquitinating the same substrates, highlighting that U-box domains determined the E2 recruitment, while the substrate determined the E2 selectivity. This study reveals the influence of substrates and U-box domains on E2 recruitment, providing a novel perspective on the function of U-box domains of E3 ligases.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
15.
Biomaterials ; 307: 122512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430646

RESUMO

Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.


Assuntos
DNA Mitocondrial , Neoplasias , Estresse Proteotóxico , Mitocôndrias , Nucleotidiltransferases , Imunoterapia , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase , Neoplasias/terapia
16.
Adv Healthc Mater ; : e2303527, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411334

RESUMO

Pathological angiogenesis with subsequent disturbed microvascular remodeling is a major cause of irreversible blindness in a number of ischemic retinal diseases. The current anti-vascular endothelial growth factor therapy can effectively inhibit angiogenesis, but it also brings significant side effects. The emergence of stem cell derived extracellular vesicles provides a new underlining strategy for ischemic retinopathy. Apoptotic vesicles (apoVs) are extracted from stem cells from human exfoliated deciduous teeth (SHED). SHED-apoVs are delivered into the eyeballs of oxygen-induced retinopathy (a most common model of angiogenic retinal dieseases) mice through intravitreal injection. The retinal neovascularization and nonperfusion area, vascular structure, and density changes are observed during the neovascularization phase (P17) and vascular remodeling phase (P21), and visual function is measured. The expression of extracellular acidification rate and lactic acid testing are used to detect endothelial cells (ECs) glycolytic activity. Furthermore, lentivirus and neutralizing antibody are used to block PD1-PDL1 axis, investigating the effects of SHED-apoVs on glycolysis and angiogenic activities. This work shows that SHED-apoVs are taken up by ECs and modulate the ECs glycolysis, leading to the decrease of abnormal neovessels and vascular remodeling. Furthermore, it is found that, at the molecular level, apoVs-carried PD1 interacts with PDL1 on hypoxic ECs to regulate the angiogenic activation. SHED-apoVs inhibit pathological angiogenesis and promote vascular remodeling in ischemic retinopathy partially by modulating ECs glycolysis through PD1/PDL1 axis. This study provides a new potential strategy for the clinical treatment of pathological retinal neovascularization.

17.
iScience ; 27(2): 108825, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313060

RESUMO

In the mammalian cochlea, moderate acoustic overexposure leads to loss of ribbon-type synapse between the inner hair cell (IHC) and its postsynaptic spiral ganglion neuron (SGN), causing a reduced dynamic range of hearing but not a permanent threshold elevation. A prevailing view is that such ribbon loss (known as synaptopathy) selectively impacts the low-spontaneous-rate and high-threshold SGN fibers contacting predominantly the modiolar IHC face. However, the spatial pattern of synaptopathy remains scarcely characterized in the most sensitive mid-cochlear region, where two morphological subtypes of IHC with distinct ribbon size gradients coexist. Here, we used volume electron microscopy to investigate noise exposure-related changes in the mouse IHCs with and without ribbon loss. Our quantifications reveal that IHC subtypes differ in the worst-hit area of synaptopathy. Moreover, we show relative enrichment of mitochondria in the surviving SGN terminals, providing key experimental evidence for the long-proposed role of SGN-terminal mitochondria in synaptic vulnerability.

18.
Adv Mater ; : e2312588, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316447

RESUMO

Cancer cells can upregulate the MYC expression to repair the radiotherapy-triggered DNA damage, aggravating therapeutic resistance and tumor immunosuppression. Epigenetic treatment targeting the MYC-transcriptional abnormality may intensively solve this clinical problem. Herein, 5-Aza (a DNA methyltransferase inhibitor) and ITF-2357 (a histone deacetylase inhibitor) are engineered into a tungsten-based nano-radiosensitizer (PWAI), to suppress MYC rising and awaken robust radiotherapeutic antitumor immunity. Individual 5-Aza depletes MYC expression but cannot efficiently awaken radiotherapeutic immunity. This drawback can be overcome by the addition of ITF-2357, which triggers cancer cellular type I interferon (IFN-I) signaling. Coupling 5-Aza with ITF-2357 ensures that PWAI does not evoke the treated model with high MYC-related immune resistance while amplifying the radiotherapeutic tumor killing, and more importantly promotes the generation of IFN-I signal-related proteins involving IFN-α and IFN-ß. Unlike the radiation treatment alone, PWAI-triggered immuno-radiotherapy remarkably enhances antitumor immune responses involving the tumor antigen presentation by dendritic cells, and improves intratumoral recruitment of cytotoxic T lymphocytes and their memory-phenotype formation in 4T1 tumor-bearing mice. Downgrading the radiotherapy-induced MYC overexpression via the dual-epigenetic reprogramming strategy may elicit a robust immuno-radiotherapy.

19.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374407

RESUMO

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt
20.
Microbiol Spectr ; 12(4): e0341023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376366

RESUMO

The nucleocapsid protein of SARS-CoV-2 plays significant roles in viral assembly, immune evasion, and viral stability. Due to its immunogenicity, high expression levels during COVID-19, and conservation across viral strains, it represents an attractive target for antiviral treatment. In this study, we identified and characterized a single-stranded DNA aptamer, N-Apt17, which effectively disrupts the liquid-liquid phase separation (LLPS) mediated by the N protein. To enhance the aptamer's stability, a circular bivalent form, cb-N-Apt17, was designed and evaluated. Our findings demonstrated that cb-N-Apt17 exhibited improved stability, enhanced binding affinity, and superior inhibition of N protein LLPS; thus, it has the potential inhibition ability on viral replication. These results provide valuable evidence supporting the potential of cb-N-Apt17 as a promising candidate for the development of antiviral therapies against COVID-19.IMPORTANCEVariants of SARS-CoV-2 pose a significant challenge to currently available COVID-19 vaccines and therapies due to the rapid epitope changes observed in the viral spike protein. However, the nucleocapsid (N) protein of SARS-CoV-2, a highly conserved structural protein, offers promising potential as a target for inhibiting viral replication. The N protein forms complexes with genomic RNA, interacts with other viral structural proteins during virion assembly, and plays a critical role in evading host innate immunity by impairing interferon production during viral infection. In this investigation, we discovered a single-stranded DNA aptamer, designated as N-Apt17, exhibiting remarkable affinity and specificity for the N protein. Notably, N-Apt17 disrupts the liquid-liquid phase separation (LLPS) of the N protein. To enhance the stability and molecular recognition capabilities of N-Apt17, we designed a circular bivalent DNA aptamer termed cb-N-Apt17. In both in vivo and in vitro experiments, cb-N-Apt17 exhibited increased stability, enhanced binding affinity, and superior LLPS disrupting ability. Thus, our study provides essential proof-of-principle evidence supporting the further development of cb-N-Apt17 as a therapeutic candidate for COVID-19.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo , Humanos , SARS-CoV-2/genética , DNA de Cadeia Simples/farmacologia , Vacinas contra COVID-19 , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...